•光电器件与材料•

基于双包层双芯光纤的一阶光时域微分器研究

王馨梦,裴 丽,王一群

(北京交通大学 光波技术研究所 全光网络与现代通信网教育部重点实验室,北京 100044)

摘 要:提出一种新型的基于双包层双芯光纤结构的光时域一阶微分器。基于耦合模理论和矢量分析法,通过选取合理的 双包层双芯光纤的结构参数,研究得到了一种适用于微波领域的一阶光时域微分器,其处理信号带宽可达1.63 THz、中心频率为 196.25 THz。该微分器具有高微分精度和能量效率。同时通过调节包层厚度,可以改变微分器带宽和中心频率,实现带宽和中心 频率均可调谐的光时域微分器。

关键词:光时域微分器;双包层双芯光纤;信号处理;光纤器件 中图分类号:TP211 文献标识码:A 文章编号:1673-1255(2016)-06-0033-06

Research on First-order Optical Temporal Differentiator Based on Double-clad and Dual-core Fiber

WANG Xin-meng, PEI Li, WANG Yi-qun

(Key Laboratory of All Optical Network and Advanced Telecommunication Network, Ministry of Education, Institute of Light Wave Technology, Beijing Jiaotong University, Beijing 100044, China)

Abstract: A new optical temporal first-order differentiator based on a double-clad and dual-core fiber structure is proposed. According to coupled-mode theory and vector analysis and through choosing reasonable structure parameters of the double-clad and dual-core fiber, a first-order optical temporal differentiator suitable to microwave regime is obtained and the processing signal bandwidth is 1.63 THz, the central frequency is 196.25 THz. The proposed differentiator has high accuracy and energy efficiency. In particular, the bandwidth and the central frequency of the differentiator can be tuned by changing the thickness of the clad to get the optical temporal differentiator with bandwidth and central frequency both tunable.

Key words: optical temporal differentiator; double-clad and dual-core fiber; signal processing; optical device

传统的光传输网络上通常是将光信号转换成 电信号,在电域上对信号进行处理,这使得系统变 得复杂并且限制了网络的带宽和速度^[1]。一种有效 的解决方案就是实现所有器件的全光化^[2],因此需 要设计出等效电路器件的光器件。光时域微分器 就是其中一个重要的光信号处理器件,它能够对输 入的光信号在光域实时进行时间导数的运算^[3]。光 时域微分器除了作为对光信号进行微分处理的光 信号处理器外,还可以应用在光传感、光脉冲整型 以及超高速编码等领域^[2-4]。目前已报道的很多光 时域微分器可主要分为两大类:光场时域微分器和 光强时域微分器^[5]。其中光场微分器包括长周期光 纤光栅微分器^[4-6]、光学反射仪微分器^[7]、双芯光纤微 分器^[8]等。文中所设计的双包层双芯光纤微分器即 为光场时域微分器,它可以对任意输入的光信号电 磁场进行一阶微分。基于光纤耦合特性和矢量分 析法,通过选取合理的光纤参数,设计出一种工作 带宽大、中心频率高、适合太赫兹频段的一阶光时 域微分器,并且该光时域微分器的中心频率和带宽 均可调谐。

1 理论分析

1.1 微分器理论研究

任意阶光时域微分器是对输入的光信号电磁场的时间变量进行微分。对于具有中心频率 f_0 的一个光信号x(t),傅里叶变换后频谱为 $X(f-f_0)$,f是光频率。n次微分后得到的频率响应为 $Y(f)=[j(2\pi f)\cdot n]X(f)$,其中j为虚数单位。当n=1时,可以得到一阶光时域微分器的传递函数为

$$H(f) \propto [j(f - f_0))] \tag{1}$$

由式(1)可以得到一阶光时域微分器的特征, 幅度谱与基带频率(f-f₀)在中心频率f₀左侧呈线性 减小、右侧呈线性增大;并且相位谱在中心频率f₀处 有一个π相位的跳变。

1.2 多包层双芯光纤理论研究

双芯光纤是一种的特殊光纤结构,如图1所示。

它是在一个包层里有两个相互平行纤芯的波导结构。当两个纤芯离得很远时纤芯之间不发生 耦合,可以作为光的传输介质;当两个纤芯离的很 近时,纤芯内的能量进行耦合又可以设计成光器件 使用。微分器就是根据双芯光纤的两个纤芯耦合 而设计成¹⁹⁻¹⁰。

文中提出的一阶光学时域微分器的原理是在 双芯光纤的外部增加外部聚合物包层:增加包层可 以提高耦合效率补偿制造误差,并且使用有机聚合 物更容易实现高频性能并且它与半导体具有良好 的兼容性^[11]。

双包层双芯光纤横截面结构如图2所示。

图 2 双包层双芯光纤横截面结构

双包层的波导结构参数为:两个纤芯半径为r₁, 内包层半径为r₂,外包层半径为r₃,折射率分别为 n₁、n₂、n₃,空气层折射率为n₄。双包层的主要区别在 于内包层的电场分布,而内包层的电场为两纤芯在 包层形成电场的叠加,用矢量法分析得出芯子模场 矩阵表示为

$$\begin{bmatrix} e_{\phi} \\ h_{\phi} \\ e_{z} \\ h_{z} \end{bmatrix} = \begin{bmatrix} -\frac{m\beta r_{1}^{2}}{U^{2}r} J_{m}(Ur/r_{1}) & -\frac{j\omega\mu_{0}r_{1}}{U} J_{m}(Ur/r_{1}) \\ \frac{j\omega\varepsilon_{1}r_{1}}{U} J_{m}(Ur/r_{1}) & -\frac{m\beta r_{1}^{2}}{U^{2}r} J_{m}(Ur/r_{1}) \\ J_{m}(Ur/r_{1}) & 0 \\ J_{m}(Ur/r_{1}) & 0 \\ \end{bmatrix}$$
(2)
$$\begin{bmatrix} A_{1} \\ C_{1} \end{bmatrix} = M_{1}(r) \begin{bmatrix} A_{1} \\ C_{1} \end{bmatrix} \\ (2)$$

$$\begin{bmatrix} A_{1} \\ C_{1} \end{bmatrix} = M_{1}(r) \begin{bmatrix} A_{1} \\ C_{1} \end{bmatrix} \\ (2)$$

$$\begin{bmatrix} a_{1} \\ C_{1} \end{bmatrix} = M_{1}(r) \begin{bmatrix} A_{1} \\ C_{1} \end{bmatrix} \\ (2)$$

$$\begin{bmatrix} a_{1} \\ C_{1} \end{bmatrix} = M_{1}(r) \begin{bmatrix} A_{1} \\ C_{1} \end{bmatrix} \\ (2)$$

$$\begin{bmatrix} i & 0 & 0 & 0 \\ \frac{j\omega\mu_{0}r_{1}}{W}I_{m}^{'}(Wr/r_{1}) & \frac{j\omega\mu_{0}r_{1}}{W}K_{m}^{'}(Wr/r_{1}) \\ \frac{m\beta r_{1}^{2}}{W^{2}r}I_{m}(Wr/r_{1}) & \frac{m\beta r_{1}^{2}}{W^{2}r}K_{m}(Wr/r_{1}) \\ 0 & 0 \\ I_{m}(Wr/r_{1}) & K_{m}(Wr/r_{1}) \end{bmatrix} \begin{bmatrix} A_{i} \\ B_{i} \\ C_{i} \\ D_{i} \end{bmatrix} = M_{i}(r)\begin{bmatrix} A_{i} \\ B_{i} \\ C_{i} \\ D_{i} \end{bmatrix} \quad (i = 2, 3)$$

空气层模场矩阵表示为

$$\begin{bmatrix} e_{\varphi} \\ h_{\varphi} \\ e_{z} \\ h_{z} \end{bmatrix} = \begin{bmatrix} \frac{m\beta r_{1}^{2}}{W^{2}r} K_{m}(Wr/r_{1}) & \frac{j\omega\mu_{0}r_{1}}{W} K_{m}(Wr/r_{1}) \\ -\frac{j\omega\varepsilon_{1}r_{1}}{W} K_{m}(Wr/r_{1}) & \frac{m\beta r_{1}^{2}}{U^{2}r} K_{m}(Wr/r_{1}) \\ K_{m}(Wr/r_{1}) & 0 \\ 0 & K_{m}(Wr/r_{1}) \end{bmatrix} .$$
(4)
$$\begin{bmatrix} B_{4} \\ D4 \end{bmatrix} = M_{4}(r) \begin{bmatrix} B_{4} \\ D4 \end{bmatrix}$$

其中,以上各式中Ai、Bi、Ci和Di为待定系数(i=1,2,3,4), J_m , N_m , I_m , K_m 分别为第一类、第二类和修正第 一类、第二类贝塞尔函数; J_m' , N_m' , I_m' , K_m' 为其相应 的导数。 $U=r(k_0^2n_1^2-\beta^2)^{1/2}$, $W=r(\beta^2-k_0^2n_3^2)^{1/2}$, $V=U^2+W^2$, $k_0=2\pi/\lambda(\lambda)$ 为自由空间的波长); β 是传输常数。利 用传输矩阵法,根据模场分量在边界的连续性条 件,得出特征方程,从而求解出传输常数 β 的值,它 对应特征方程的根为零的点,且曲线与零轴的交点 应在 $kn_2<\beta<kn_1$ 范围内。

 $\left|M_{12} - M_{21}M_{23}^{-1}M_{32}M_{34}^{-1}M_{43}\right| = 0 \tag{5}$

其中, $M_{ij}=M_i(r=r_j)(r$ 是半径,i,j=1,2,3,4)。这里设 定双芯光纤的结构参数如下: $r_1=4.1 \mu m_x r_2=23 \mu m_x$ $r_3=62.5 \mu m_x r_4=63.5 \mu m_x n_1=1.476 x_2=1.425, n_3=1.7,$ 纤芯距离 $d=10 \mu m_o$ 图 3 为不同的模式(m=0,1,2,3)传输常数与特征方程之间关系的曲线图。

由图3可以看出,只有当模式m为1时,特征方 程有解β=5.925 63×10⁶。将此解代入式(2)、式(3)、 式(4)和式(5),可以求解出待定系数A_i、B_i、C_i和D_i。 在这种情况下双包层光波导只有HE^{II}模存在,没有 其他高阶模存在,相当于普通单模光纤,进而通过 频率归一化可等效为普通单模光纤。

1.3 双包层双芯光纤微分器的传输谱

在β=5.925 63×10⁶且只存在 HE₁₁模的情况下, 只向纤芯1注入光信号,根据式(1)、式(2)和耦合模 理论¹¹¹得到纤芯1和纤芯2的传输谱,如图4所示 (幅度做了归一化处理)。

图4 纤芯1、纤芯2的幅度相位谱。红色线是 理想一阶微分器的传输谱,黑色线是设计的微 分器传输谱,蓝色线是设计微分器的相位谱

从图中可以得出,纤芯1和纤芯2的中心频率 分别为:196.25 THz和193.81 THz,在中心频率左侧 近似线性减小、右侧近似线性增大,并且在中心频 率处有一个π相位的跳变,符合一阶微分器的两个 性质。因此设计的双包层双芯光纤可以作为一阶 光时域微分器使用。

2 双包层双芯光纤微分器特性分析

2.1 光纤长度对中心频率的影响

从图4中可以得出,纤芯1和纤芯2具有相同的 特性,所以接下来只研究纤芯1的特性即可。不同 光纤长度z=60 mm、65 mm、70 mm、75 mm 和80 mm 时纤芯的传输特性如图5a所示。

(a)不同光纤长度下(60 mm、65 mm、70 mm、 75 mm 和 80 mm)纤芯1的中心频率变化图

从图中得知,当改变双包层双芯光纤长度时中 心频率将改变,z=60 mm时微分器的中心频率最 大,约为f₀=197.47 THz,z=80 mm时微分器中心频率 最小,约为f₀=195.32 THz。并且随着光纤长度的逐渐 减小,中心频率逐渐增大。图 5b 是光纤长度与中心 频率的关系图。从图中可以看出,光纤长度和中心 频率近似线性减小。因此通过调整光纤长度,可以 调谐中心频率。

2.2 微分特性

对设计的双包层双芯光纤光时域微分器微分 结果进行验证。图6为衰减因子为τ₀=0.5 ps的高斯 脉冲(蓝色虚线)通过双包层双芯光纤一阶微分器 的仿真波形(黑色实线)和理论计算得到的波形(红 色圆圈)图。

图6 纤芯1输出的高斯一阶时域微分仿真值和理论值

从图中可以看出,经过双包层双芯光纤光时域 微分器输出的仿真波形和理论计算输出的波形有 很高的重合度,这说明误差较小,该双包层双芯光 纤光时域微分器可以对光信号提供精度很高的一 阶时域微分。

2.3 3 dB带宽

3 dB带宽是衡量一个器件性能的重要指标,带 宽越大,微分器能够处理的信号速度就越高,能够 处理的信号带宽就越大。下面分析在模式*m*=1传输 常数β有解的情况下,双包层双芯光纤结构在不同内 包层厚度情况下幅度谱带宽的变化如图7所示。

图 7 不同包层厚度下(r2=22 μm、23 μm、26 μm 和 36 μm)微分器 3dB 带宽

改变包层厚度, r₂值分别取 22 μm、23 μm、 26 μm、36 μm时,计算得到3 dB带宽分别为1.33 THz、 1.63 THz、1.365 THz 和 0.71 THz。发现当 r₂=23 μm 时,带宽最大为1.63 THz,比普通双芯光纤微分器带 宽大 6.53%左右^[12]。而且随着带宽的逐渐增大,中 心频率也越来越大。得到结论,通过调节包层厚 度,可以改变微分器带宽和中心频率,做到带宽和 中心频率均可调谐的光时域微分器。

2.4 误差因子和能量效率

除了3dB带宽,误差因子和能量效率也是衡量 一个微分器性能的重要指标。误差因子是实际信 号波形与理论信号波形的差异程度^[15],有下式

$$D = \frac{\int_{-\infty}^{\infty} \left| \left| f(t) \right|^2 - \left| g(t) \right|^2 \right| dt}{\int_{-\infty}^{\infty} \left| g(t) \right|^2 dt}$$
(6)

能量效率衡量了信号通过微分器后能量变化 情况^[15],有下式

$$E = \frac{\int_{-\infty}^{\infty} \left| f_{\text{out}}(t) \right|^2 \mathrm{d}t}{\int_{-\infty}^{\infty} \left| f_{\text{in}}(t) \right|^2 \mathrm{d}t} \tag{7}$$

计算不同包层厚度下微分器的误差因子和能 量效率性能指标如表1所示。

表1	不同包层厚度	下微分器的性能指标

r₂/µm	23	26	22	36
3 dB带宽/THz	1.63	1.365	1.33	0.71
误差因子	0.009 97	0.014 49	0.015 29	0.063 15
能量效率	0.020 5	0.028 76	0.030 24	0.099 03

由表1看出,随着带宽的增大,误差因子和能量效率都逐渐减小,但是减小的幅度越来越小。 当 r2=23 μm时,带宽为1.63 THz、误差因子为 0.009 97、能量效率为0.020 5,此时性能最优。

3 结 论

微分器是实现全光网络的重要光学器件,所以 对微分器的研究至关重要。文中提出一种基于多 包层双芯光纤的一阶光时域微分器。推导和求解 了多包层双芯光纤的特征方程,并讨论了包层厚度 对微分器工作带宽的影响。仿真结果表明,当r₂ = 23 μm时,所提出的微分器的中心频率和3dB带宽 分别为196.25 THz和1.63 THz,带宽比传统双芯光 纤微分器大6.53%,该器件适用于太赫兹频率。此 外,所提出的微分器的误差因子为0.009 97,能量效率 为2.049%,可以高精度、高效率进行微分运算。更重 要的是,微分器的中心频率和3 dB带宽也可以通过改 变光纤的长度或包层厚度来实现调谐。

参考文献

- [1] 高林柱.光时域微分器研究进展[J].光通信技术,2013, 37(011):45-47.
- [2] Madsen C K, Dragoman D, AzañaJ, et al. Signal analysis tools for optical signal processing[J]. Eurasip J Appl Signal Proc, 2005,10:449-1623.
- [3] Liu Q, Ye Q, Pan Z. Design of all-optical temporal differentiator using a Moir ber grating[J]. Chinese Opt Lett, 2012, 10(9):092301.
- [4] Kulishov M, Azana J. Long-period fiber gratings as ultrafast optical differentiators[J]. OPtics Letters, 2005, 30:20.
- [5] Ngo N Q, YU S F, Tjin S C, et al. A new theoretical basis of higher- derivative optical differentiators[J]. Opt Commun, 2004, 230(1-3):115-129.
- [6] Slavík R, Park Y, Kulishov M, et al. Ultrafast all-optical differentiators [J]. Opt Express, 2006, 14:10699.
- [7] Li M, JannerD, Yao J P,et al. Arbitrary-order all-fiber temporal differentiator based on a fiber Bragg grating: design and experimental demonstration[J]. Optical Expess, 2009, 17: 22.
- [8] Kulishov M, Krcmarik D, Slavik R. Design of terahertzbandwidth arbitrary- order temporal differentiators based on long-period fiber gratings[J]. Optics Letters, 2007, 32:

20.

- [9] Slavik R, Park Y, Krcmarik D, et al. Stable all-fiber photonic temporal differentiator using a long-period fibergrating interferometer[J]. Optics Communications,2009, 282: 2339-2342.
- [10] You H D, Ning T G, Jian W, et al. Optical temporal differentiator using a twin- core fiber[J]. Optical Engineering, 2013, 52(1): 015005.
- [11] Allan W S. Coupled-mode theory for optical fibers[J]. J Opt Soc Am, 1972, 62(11):1267-1277.
- [12] Hardy A, Streifer W. Coupled mode theory of parallel waveguides[J]. J Lightwave Technol, 1985, 3(5).
- [13] Shi Y.Fabrication and characterization of high-speed polyurethane-disperse red 19 integrated electrooptic modulators for analog system applications[J]. IEEE J. of Sel. Topics Quantum Electron, 1996, 2(2):289.
- [14] You H D, Ning T G, Pei L, et al. An all-fiber optical temporal differentiator for wavelength- division- multiplexed system based on twin-core fiber[J]. Opt Quant Electron, 2014, 46(11):1481.
- [15] Cuadrado-Laborde C. All-optical ultrafast fractional differentiator[J]. Optical and Quantum Electronics, 2008, 40(13): 983-990.

(上接第25页)

议,得出以下结论:(1)超长跨距无中继光纤通信系 统有着广泛的应用;(2)远程遥泵放大是超长跨距 无中继通信系统中的关键技术;(3)实际工程中可 采用旁路遥泵方式设计远程遥泵放大器;(4)泵浦 光源宜采用1480 nm 波段光纤激光器组件构成,实 际工程中多采用1480 nm 或1455 nm 光纤激光器 构成;(5)不能仅依靠增加泵浦功率来获取较大增 益,还需配套调整铒纤长度;(6)铒纤长度需根据系 统所需增益、铒离子浓度、铒纤转换效率等多种因 素综合设计;(7)1390 nm+1480 nm 层叠泵浦方案 在实际工程应用中并不具备明显优势;(8)采用前 向遥泵方式还是后向遥泵方式对系统增益的影响 并不明显,具体采用哪种方式可根据系统实际应用 环境确定。

参考文献

- [1] 夏江珍,谢同林,贾小铁,等.507 km超长站距无中继光 传输系统[J]. 电力系统通信,2009,30(197):10-12,19.
- [2] 江尚军,黄誉,李亮.超长跨距无中继全光传输系统关键技术研究[J].广东通信技术,2012,8:42-46.
- [3] 江尚军,吴锦虹,罗青松.基于G.652光纤的超长跨距 无中继全光通信系统设计[J].中国电子科学研究院学 报,2012,7(4):406-410.
- [4] 程细海,徐健,殷天峰,等.基于遥泵技术的超长距系统 研究与应用[J].光通信技术,2015,6:23-26.
- [5] 王侠,欧阳竑,刘霄海,等.各种常见光纤喇曼增益谱分析[J].光通信技术,2010,32(7):35-37.
- [6] 沈一春,宋牟平,章献民,等.单模光纤中受激布里渊散 射阈值研究[J].中国激光,2015,32(4):497-500.
- [7] 秦祖军.全光纤结构喇曼光纤激光器研究[D]. 成都:电 子科技大学,2009.